Let \(X_1, X_2, \ldots\) be independent and identically distributed coin tosses: \( \mathbb{P}(X_k = -1) = \mathbb{P}(X_k = 1) = 1/2 \). Let \[ W_n(t) = \frac{1}{\sqrt{n}} \bigl( X_1 + \cdots + X_{\lfloor nt \rfloor } \bigr) . \] We plot \(W_n(t)\), \(0 \leq t \leq 1\). We send \(n \to \infty\) and animate the graph.