Let \(Y_1, Y_2, \ldots\) be independent and identically distributed uniform on \((0,1)\) random variables, and let \( X_k = Y_k^{-3/4} - 4 \). Let \[ W_n(t) = n^{-3/4} \bigl( X_1 + \cdots + X_{\lfloor nt \rfloor } \bigr) . \] We plot \(W_n(t)\), \(0 \leq t \leq 1\). We send \(n \to \infty\) and animate the graph.